Smart grid в России

Интеллектуальные сети Smart Grid — будущее российской энергетики

Рассматривается один из возможных вариантов преодоления глобальных вызовов человечеству — концепция «умной энергетики» — Smart Grid, получившая активное развитие в странах Запада. Пригодна ли концепция Smart Grid для российской энергетики или имеет смысл, как это не раз было, пойти «своим путём»? Об этом пойдёт речь в данной статье.

В жизни человека энергию можно определить как первоочередной фактор существования. Ход исторического становления общества напрямую связан с характером использования энергии. Тепло костра, ветряные и водяные мельницы, домашние печки, паровые машины, электрогенераторы… Социально-экономическое развитие человечества неотделимо от развития “энергетического мышления”. Ключевую роль в этом историческом процессе играет энергетика, решающая вопросы прикладного использования энергии.

Мы становимся свидетелями наступления эпохи перемен. Неуклонно растёт не только численность населения Земли, но и удельное потребление энергии на душу населения. В то же время сокращаются запасы органического топлива, остающегося основным источником энергии (порядка 85%), причём лишь треть первичной энергии обращается в полезное действие. Негативное воздействие на окружающую среду деятельности человечества становится очевидным: вопросы изменения климата и связанные с этим природные аномалии всё чаще обсуждаются на высшем государственном уровне. Завершают глобальную картину перемен экономические потрясения: мировая экономика сейчас находится в нижней точке волны “большого кондратьевского цикла” (Кондратьев Н.Д. — русский экономист, основоположник теории больших экономических циклов). Очевидно одно: человечество стоит перед лицом глобальных вызовов.

Обратимся к истории развития западной и российской энергетики.

Начало развития будущих мировых энергосистем можно отнести ко второй половине XIX века. В это время были основаны такие компании, как General Electric, Westinghouse, Siemens, явившиеся впоследствии локомотивами мировой энергетики. Интенсивно растущий спрос на рынке электроэнергетики, государственное регулирование при растущих частных инвестициях способствовали возникновению в отрасли крупных компаний, многие из которых превратились в межотраслевые концерны. Энергосистемы запада развивались как совокупность региональных энергоструктур.

Что касается России, то начало становления российской энергетики тесно связано с именем Вернера фон Сименса – основателя немецкого концерна Siemens. После ознакомительного визита Сименса в Россию в 1852 г. в России было учреждено дочернее предприятие компании “Siemens & Halske”, которое возглавил брат Вернера – Карл Фридрих фон Сименс. Дальнейшая деятельность Карла Сименса привела к возникновению в России по указу Александра III “Общества электрического освещения” – прародителя ОАО “Мосэнерго” и ОАО “Ленэнерго ”. Отсюда и берёт своё начало одна из крупнейших в настоящее время мировых энергосистем – российская .

Накануне Первой мировой войны энергетика России серьёзно отставала от зарубежных: энергопотребление на душу населения было в 10 раз меньше, чем в Германии и в 60 раз меньше, чем в США. Россия размещалась на восьмом месте в мире по выработке электроэнергии, что, учитывая степень электрификации мирового сообщества, являлось весьма низким показателем. Ещё больше усугубили ситуацию Первая мировая война и революция. В 1917 г. компания Сименса была национализирована, но спустя три года возобновила работу, выполняя контракты в рамках реализации плана электрификации страны – ГОЭЛРО.

ГОЭЛРО (Государственная комиссия по электрификации России) – орган, созданный 21 февраля 1920 г. для разработки проекта электрификации России после революции 1917 г. По сути ГОЭЛРО являлся планом развития не только энергетики, а всей российской экономики. По словам писателя-фантаста Герберта Уэллса, “Ленин, который, как подлинный марксист, отвергает всех “утопистов”, в конце концов, сам впал в утопию – утопию электрификации”. Тем не менее, к 1990 г. целевые показатели плана ГОЭЛРО в 80 раз превзошли первоначальные по производству электроэнергии и в 50 раз по установленной мощности электростанций, определив тем самым место российской энергетики среди мировых лидеров.

Таким образом, российская энергосистема, получив в самом начале становления позитивный зарубежный опыт, развивалась под чутким руководством государства как единая централизованная система.

Различия в развитии зарубежных и российской энергосистем могут породить сомнения в целесообразности применения западных концепций (в данном случае – Smart Grid) в российских условиях. Проанализируем обоснованность подобных сомнений.

Что же такое Smart Grid?

С точки зрения Министерства энергетики США, интеллектуальным сетям (Smart Grid) присущи следующие атрибуты :

  • способность к самовосстановлению после сбоев в подаче электроэнергии;
  • возможность активного участия в работе сети потребителей;
  • устойчивость сети к физическому и кибернетическому вмешательству злоумышленников;
  • обеспечение требуемого качества передаваемой электроэнергии;
  • обеспечение синхронной работы источников генерации и узлов хранения электроэнергии;
  • появление новых высокотехнологичных продуктов и рынков;
  • повышение эффективности работы энергосистемы в целом.

По мнению Европейской Комиссии, занимающейся вопросами развития технологической платформы в области энергетики, Smart Grid можно описать следующими аспектами функционирования :

  • Гибкость. Сеть должна подстраиваться под нужды потребителей электроэнергии.
  • Доступность. Сеть должна быть доступна для новых пользователей, причём в качестве новых подключений к глобальной сети могут выступать пользовательские генерирующие источники, в том числе ВЭИ с нулевым или пониженным выбросом CO2.
  • Надёжность. Сеть должна гарантировать защищённость и качество поставки электроэнергии в соответствии с требованиями цифрового века.
  • Экономичность. Наибольшую ценность должны представлять инновационные технологии в построении Smart Grid совместно с эффективным управлением и регулированием функционирования сети.

Итак, мы видим концептуальные определения интеллектуальной сети, указывающие на важную роль Smart Grid в дальнейшем технологическом, экономическом и экологическом развитии общества. Помимо решения задач снижения нагрузки на окружающую среду, уменьшения энергетического дефицита за счёт использования возобновляемых источников энергии, повышения качества и надёжности работы энергосистемы в концепциях Smart Grid прослеживается ещё один очень важный аспект: Smart Grid является катализатором экономического подъёма. Реализация положений данной концепции будет подразумевать развитие инновационных технологий, расширение масштабов производства высокоинтеллектуальной продукции, более интенсивное применение электрической энергии в транспортной инфраструктуре (использование автомобилей с электродвигателями), развитие новых рыночных отношений с привлечением в энергетику потребителей в качестве активных игроков рынка (возможность продавать электроэнергию, используя локальные генерирующие источники). Благодаря реализации концепции Smart Grid человечество вступит в новую фазу существования, которая будет характеризоваться гармоничным взаимодействием с окружающей средой, улучшением качества жизни и общим экономическим подъёмом. Выглядит амбициозно, но отнюдь не фантастично. И едва ли это противоречит отечественным взглядам на развитие энергетики и страны в целом.

В России идея Smart Grid в настоящее время выступает в качестве концепции интеллектуальной активно-адаптивной сети, которую можно описать следующими признаками :

  • насыщенность сети активными элементами, позволяющими изменять топологические параметры сети;
  • большое количество датчиков, измеряющих текущие режимные параметры для оценки состояния сети в различных режимах работы энергосистемы;
  • система сбора и обработки данных (программно-аппаратные комплексы), а также средства управления активными элементами сети и электроустановками потребителей;
  • наличие необходимых исполнительных органов и механизмов, позволяющих в режиме реального времени изменять топологические параметры сети, а также взаимодействовать со смежными энергетическими объектами;
  • средства автоматической оценки текущей ситуации и построения прогнозов работы сети;
  • высокое быстродействие управляющей системы и информационного обмена.

На основе указанных признаков можно дать достаточно чёткое определение интеллектуальной сети как совокупности подключённых к генерирующим источникам и электроустановкам потребителей программно-аппаратных средств, а также информационно-аналитических и управляющих систем, обеспечивающих надёжную и качественную передачу электрической энергии от источника к приёмнику в нужное время и в необходимом количестве.

На уровне концептуальных отечественных документов можно определить предпосылки к развитию отечественной интеллектуальной энергетики.

Согласно “Энергетической стратегии России на период до 2030 года” в качестве приоритетных направлений научно-технического прогресса в электроэнергетике выделяются следующие :

  • создание высокоинтегрированных интеллектуальных системообразующих и распределительных электрических сетей нового поколения в Единой энергетической системе России (интеллектуальные сети – Smart Grid);
  • использование низкотемпературных сверхпроводниковых индукционных накопителей электрической энергии для электрических сетей и гарантированного электроснабжения ответственных потребителей;
  • широкое развитие распределенной генерации;
  • развитие силовой электроники и устройств на их основе, прежде всего различного рода сетевых управляемых устройств (гибкие системы передачи переменного тока – FACTS);
  • создание высокоинтегрированного информационно-управляющего комплекса оперативно-диспетчерского управления в режиме реального времени с экспертно-расчётными системами принятия решений;
  • создание высоконадёжных магистральных каналов связи между различными уровнями диспетчерского управления и дублированных цифровых каналов обмена информацией между объектами и центрами управления;
  • создание и широкое внедрение централизованных систем противоаварийного управления, охватывающих все уровни Единой энергетической системы России;
  • создание автоматизированных систем управления спросом на электроэнергию;
  • создание водородных систем аккумулирования энергии и покрытия неравномерностей графика нагрузки.

Подтверждением намерений строить и развивать в России интеллектуальную энергетику служит утверждение приоритета данного направления на уровне Президента и Правительства, а также включение расходов на “интеллектуализацию сетей” в инвестиционную программу ОАО “ФСК ЕЭС”. Очевидно, что на концептуальном уровне кардинальных противоречий между западным и отечественным взглядом на развитие интеллектуальных сетей нет.

Каковы же конкретные шаги на пути реализации концепций интеллектуальных сетей?

Проекты ОАО “ФСК ЕЭС”

В настоящее время идёт разработка концепции построения умных сетей, а также реализация проектов по внедрению на объектах ОАО “ФСК ЕЭС” отдельных элементов умных сетей:

  • установка СТАТКОМ (статический преобразователь реактивной мощности на базе преобразователя напряжения) на ПС 400 кВ “Выборгская”;
  • установка управляемых шунтирующих реакторов на ПС 50 кВ “Таврическая”, “Барабинская”, “Иртыш”;
  • установка статического тиристорного компенсатора и конденсаторных установок на ПС 500 кВ “Ново-Анжерская”.
Работа ОАО “ХОЛДИНГ МРСК”

Для распределительного электросетевого комплекса применение технологии умных сетей является одной из важнейших задач. В настоящее время активно реализуются проекты внедрения умных приборов учёта электроэнергии, создаются центры управления сетями, повышается наблюдаемость ПС. Первоочередной задачей в “интеллектуализации” распределительной сети является умный учёт. При этом очевидной становится проблема разнородности применяемых приборов учёта по функционалу и используемому коммуникационному интерфейсу. Предстоит большая работа по созданию единого информационного ландшафта системы учёта, подразумевающей применение открытых, гибких многофункциональных компонентов (в частности, приборов учёта), работающих по принципу “plug and play”. В этом случае опыт западных коллег был бы весьма полезен .

Некоторые зарубежные проекты
  • Проект “FENIX” (Flexible Electricity Networks to Integrate the expected Energy Evolution). Проект построения гибкой электрической сети, основными целями которого являются: отработка механизмов функционирования общеевропейской энергосистемы, в частности, разработка концепции виртуальных электростанций (VPP); отработка алгоритмов включения в общую систему распределённых источников генерации (DER) и возобновляемых источников энергоресурсов (RES); разработка новых программно-аппаратных платформ для претворения в жизнь концепции VPP; технико-экономическое обоснование применения VPP; демонстрация разработок на полигонах в Испании и Великобритании. Данный проект объединил ведущих игроков европейского энергетического рынка, таких как Iberdrola, Electricité de France, EDF Energy Networks, Red Eléctrica de España, National Grid Transco, Siemens PSE, Areva T&D и др.
  • Проект “ADDRESS” (Active Distribution network with full integration of Demand and distributed energy RESourceS). Данный проект является составной частью европейской концепции сетей будущего Smart Grids European Technology Platform и объединяет работу 25 компаний из 11 стран Европы, включая EDF, ABB, Enel, Kema, Philips и др. Проект планируется к завершению в 2012 г.
  • Проекты построения Microgrids – отдельных энергосетевых структур, расположенных на небольшой территории, обладающих собственными генерирующими источниками и способными взаимодействовать с центральной сетью для решения задач покрытия максимума пиковых нагрузок. Проекты успешно реализуются в Европе (консорциум 14 компаний из 7 стран во главе с Национальным технологическим университетом Афин (NTUA)), США (проекты реализуемые консорциумом CERTS, компанией GE), Канаде, Японии.
  • Проект построения интеллектуальной энергетической инфраструктуры (распределённая генерация, возобновляемые источники энергии, средства аккумулирования энергии, центры диспетчерского управления) в трёх префектурах Японии, реализуемый компанией Mitsubishi Electric.

Итак, в практическом плане в России и за рубежом ведутся активные работы по созданию концепций и апробации технологий интеллектуальных сетей; перспективы их развития в России можно сформулировать укрупнённо:

  • Запасы нефти и газа небезграничны, и освоение возобновляемых источников энергии с дальнейшим включением их в единую энергетическую систему страны является стратегически важной задачей.
  • Развитие распределённой энергетики, в том числе когенерации за счёт модернизации существующих котельных, для покрытия максимумов нагрузок и устранения энергодефицита – весьма важная задача для распределительного электросетевого комплекса.
  • Обеспечение бессбойной работы системы в условиях роста использования спорадической нагрузки (например, электромобилей, рост использования которых очевиден).
  • Сокращение потерь электроэнергии за счёт построения систем интеллектуального учёта с возможностью учёта качества электроэнергии и ограничения нагрузки.
  • Развитие коммуникационной среды, способной надёжно и качественно поддерживать двунаправленный информационный обмен между поставщиками и потребителями энергоресурсов. Одним из способов решения данной задачи является применение беспроводных интеллектуальных коммуникационных устройств (например, российских – СИКОН ТС65 и СИКОН-Колибри).
  • Повышение качества электроэнергии за счёт применения устройств компенсации реактивной мощности.
  • Применение интеллектуального оборудования и программных комплексов для управления топологией сети с целью обеспечения надёжности функционирования.
  • Использование накопителей энергии большой ёмкости для выравнивания графика нагрузки, а также для обеспечения бесперебойной работы особо важных объектов.
  • Развитие рыночных отношений в энергобизнесе с привлечением потребителей электроэнергии (создание отдельных участков сети – аналог Microgrids) как возможныхпоставщиков электроэнергии в требуемое время в нужные участки сети.
  • Разработка и производство отечественными компаниями высокотехнологичной конкурентной продукции для обеспечения функционирования интеллектуальной сети.

Перечисленные аспекты будущей интеллектуальной сети чётко соответствуют модернизационному сценарию развития российской экономики, обозначенному руководством нашей страны. Использование зарубежного опыта (не слепое копирование, а осознанное применение лучших практик в проекции на отечественную действительность) в этом случае не станет нарушением базовых принципов патриотизма, являясь образцом рационального использования общемирового опыта.

Подводя итоги, можно сказать, что вопреки мнению отдельных специалистов, применение интеллектуальных сетей в России перспективно и востребовано. “Умные сети” – Smart Grids – не очередное модное слово, появившееся на Западе, малопригодное для России и сулящее только лишь головную боль “бывалым энергетикам-профессионалам”. “Умные сети” – это закономерный этап развития социально-экономических отношений, воплощённый в технологическую концепцию. И Россия, будучи полноправным членом мирового сообщества, ни в коем случае не должна его игнорировать, целенаправленно двигаясь вперёд совместно с ведущими мировыми державами.

Список литературы
  1. Электроэнергетика России 2030: Целевое видение / Под общ. ред. Б.Ф. Вайнзихера. – М.: Альпина Бизнес Бук, 2008.
  2. http://www.oe.energy.gov/smartgrid.htm (интернет-ресурс).
  3. European SmartGrids Technology Platform. Vision and Strategy for Europe’s Electricity Networks of the Future. – Luxembourg: Office for Official Publications of the European Communities, 2006.
  4. Дорофеев В.В., Макаров А.А. Активно-адаптивная сеть – новое качество ЕЭС России // Энергоэксперт, 2009, № 4 (15).
  5. Концепция энергетической стратегии России на период до 2030 года (проект). Прил. к журналу “Энергетическая политика”. – М.: ГУ ИЭС, 2007.
  6. Ледин С.С., Игнатичев А.В. Развитие промышленных стандартов внутри- и межсистемного обмена данными интеллектуальных энергетических систем // Автоматизация и IT в энергетике, 2010, № 10.

Ледин С.
Автоматизация и IT в энергетике. № 11 (16), 2010

Умные сети Smart Grid в электроэнергетике

Умные сети Smart Grid представляют собой модернизированные каналы электроснабжения, работающие с использованием коммуникационных и информационных технологий. Основной задачей внедрения подобных систем является обеспечение надёжной работы оборудования посредством внедрения дистанционного контроля над исправностью отдельных компонентов.

Сущность технологии Smart Grid в электроэнергетике

Система собирает информацию о производстве и потреблении электроэнергии, что позволяет корректно распределять энергоресурсы, обеспечивать надёжность их потребления и эффективность использования. Классические умные сети Smart Grid в электроэнергетике обладают следующими характеристиками:

  • способность управлять работой потребителей;
  • самостоятельное восстановление после сбоев;
  • защищённость от физического и кибернетического внешнего вмешательства;
  • обеспечение электроснабжения требуемого качества;
  • синхронная работа генерирующих источников и центров хранения электроэнергии;
  • способность существенно повышать эффективность работы энергосистемы в целом.

Иными словами умные сети Smart Grid в электроэнергетике должны отвечать критериям гибкости, доступности, надёжности и экономичности. Помимо этого концепция Smart Grid содержит ещё один важный аспект – катализацию экономического подъёма. Развёртывание подобных проектов способствует развитию инновационных технологий, стимулирует производство высокоинтеллектуальной продукции, расширяет возможности использования электрической тяги в транспортной инфраструктуре.

Потребители становятся активными участниками рынка, поскольку получают возможность продавать электроэнергию, выработанную на локальных генерирующих источниках. Человечество вступает в новую фазу гармоничного взаимодействия с окружающей средой. Создаются предпосылки для общего экономического подъёма и улучшения качества жизни.

Каналы передачи данных между объектами Smart Grid

Для передачи информации между элементами Smart Grid могут использоваться различные типы связи: низкочастотные контрольные кабели, коаксиальные высокочастотные кабели, провода высоковольтных линий электропередач, оптические кабели, направленные защищённые радиоканалы и др.

Из-за дешевизны и доступности наибольшую популярность приобрели сетевые технологии Ethernet/Internet. В такие сети через встроенные модемы легко подключаются разнообразные электронные датчики, измерительные преобразователи, трансдьюсеры, микропроцессорные счётчики и другие приборы. Альтернативой данному варианту являются оптоволоконные каналы и различные технологии современной беспроводной связи.

Для надёжного функционирования сети Smart Grid важно свести к минимуму количество отдельных обрабатывающих модулей. От многочисленных компонентов информация должна подаваться на мощные серверы, обрабатываться и пересылаться на исполнительные элементы. Чтобы избежать потерь эффективности, основная функциональность системы должна обеспечиваться на программном уровне.

Релейная защита в сетях Smart Grid

Концепция Smart Grid предполагает совмещение релейной защиты с информационно-измерительными функциями. Микропроцессорные устройства релейной защиты измеряют токи и напряжение в векторной форме, накапливают данные о срабатываниях и аварийных режимах в специальных блоках памяти. Таким образом, релейная защита превращается в своеобразный центр обработки информации, элемент системы диагностики и мониторинга электрооборудования.

Опыт реализации проектов Smart Grid

  1. Проект Flexible Electricity Networks To Integrate The Expected Energy Evolution (FENIX). Гибкая электрическая сеть, реализующая концепцию общеевропейской энергосистемы с использованием виртуальных электростанций (VPP), возобновляемых источников энергоресурсов (RES) и распределённых источников генерации (DER).
  2. Проект Active Distribution Network With Full Integration Of Demand And Distributed Energy RESourceS (ADDRESS). Составная часть европейской концепции сетей будущего Smart Grids European Technology Platform, объединяющая работу 25 энергокомпаний из 11 европейских стран.
  3. Проекты Microgrids – отдельные энергосетевые структуры, размещённые на небольших территориях (реализованы в США, Европе, Японии и Канаде). Такие системы обладают локальными генерирующими источниками, поэтому способны взаимодействовать с центральными сетями при необходимости покрытия максимума пиковых нагрузок.
  4. Проект интеллектуальной энергетической инфраструктуры компании Mitsubishi Electric. Предполагает распределённую генерацию, использование возобновляемых источников энергии, диспетчерских центров и средств аккумулирования энергии.

Как видим, построение умных сетей Smart Grid в электроэнергетике перспективно и востребовано. Сегодня это закономерный этап развития глобальной экономики и социальных отношений.

Состояние энергосетей в России приближается к критической степени износа. Запас работоспособности и прочности энергетических систем практически исчерпан. На сегодняшний день приблизительно 60-70% основных фондов электросетевого комплекса уже давно выработали срок службы. В условиях резкого увеличения объемов потребления энергоресурсов диспетчерские управления не всегда справляются с возникающими ситуациями, что приводит к соответствующим последствиям и убыткам для энергетических компаний. Потребность в новых современных решениях подобных ситуаций – это не просто вопрос минимизации убытков, это условие развития энергетической отрасли в целом.

Современные нагрузки на энергосистему требует быстрого и максимально точного анализа состояния рабочей системы для локализации неполадок, либо предотвращения таковых с помощью прогноза нагрузок на отдельные сегменты системы. В этом плане энергетические сети все больше требуют дополнения новыми цифровыми интеллектуальными решениями, способными помогать выполнять задачи сбора и анализа большого количества данных.

В ряде европейских стран процесс модернизации электроэнергетики в направлении создания «умных» сетей электроснабжения, получивших название Smart Grid, системно и последовательно идет уже длительное время. «Интеллектуальное» руководство электросетью обеспечивает автоматизацию, мониторинг и контроль двусторонней передачи энергии на всех этапах – от электростанции до бытовой розетки. Для масштабов России быстро внедрить и полностью перейти на использование Smart Grid решений не так просто. Тем не менее, проекты по интеграции «умных» технологий в промышленную энергетику уже не из разряда разговоров о будущем.

А что у нас?

Первые «умные» распределительные сети появились в Москве, Санкт-Петербурге и Казани, чуть позже в Иркутске. Один из таких проектов — пилотная зона, реализуемая совместно с «Ленэнерго». Она включает в себя участок сети 6 кВ в исторической части Санкт-Петербурга. Задача проекта – подтвердить работоспособность предлагаемых решений и технологий, на реальном примере продемонстрировать возможность интеграции в сети Smart Grid.

Также стоит внимания проект в Сибири, где технологии Smart Grid внедряются на базе «Иркутской электросетевой компании». Компания Schneider Electric предоставила комплекс услуг по налаживанию «умной» сети, включая проектирование, поставку и монтаж оборудования, установку программного обеспечения и последующее сервисное обслуживание аппаратуры. Более того, было проведено обучение сотрудников основам работы с новой технологией.

Следующий успешный проект – это кейс АО «Башкирская электросетевая компания» в Уфе. На данный момент выполнен пилотный проект и ведется работа по его тиражированию на город в целом. В рамках пилотного проекта было заменено устаревшее оборудование на новое с функциями наблюдаемости и управляемости, а также с высоким уровнем безопасности и надежности. Также установлены приборы коммерческого учета электроэнергии и организован центр управления сетями для города в целом. В результате реализации проекта фактический уровень потерь электроэнергии снизился с 19% до 1%.

По мнению Дмитрия Шароватова, генерального директора АО «Башкирская электросетевая компания»: «Без новых подходов в выстраивании бизнес процессов и организации производственных процессов не возможно будущее любой из отраслей, в том числе энергетики».

Безусловно, реализация концепции Smart Grid в России – процесс долгий и многоэтапный. Вместе с тем, использование «умных» платформ для управления большими данными энергопотребления дает целый перечень преимуществ.

Одна из наиболее важных возможностей «умных» систем – это способность снижения текущих расходов. Подстанции нового поколения позволяют снизить текущие расходы путем объединения нескольких систем управления и мониторинга в одну сеть. В то же время происходит снижение капитальных расходов. Не менее важным следствием внедрения smart сетей выступает улучшение защиты энергосистемы, поскольку информация со всех станций и подстанций сможет контролироваться с единого приложения.

В целом проект Smart Grid имеет средне- и долгосрочный горизонт возврата инвестиций. Чтобы сделать сеть экономически эффективной и умной, необходим целый комплекс мероприятий. Исходя из опыта стран Европы требуется в среднем полтора года, чтобы система начала оправдывать капиталовложения.

На сегодняшний день львиная доля инновационных технологий в электроэнергетике разработана за рубежом. Исходя из этого большинство интеллектуальных систем мониторинга и контроля не может быть использовано в сетях России в полных объемах, поскольку существует ряд технологических отличий электроэнергетической инфраструктуры России и стран Запада. В этом плане отечественные разработки в сфере интернета вещей, смарт микросетей, систем анализа и управления энергосистем имеют все шансы закрепится на огромном рынке, который только начинает развитие.

Смарт решения в области энергетики, которых ждет рынок – это прежде всего те, что будут направлены на решение основных задач отрасли: повышение качества и надежности энергоснабжения, увеличение операционной эффективности, качественное улучшение технического состояния энергосетевой инфраструктуры, повышение энергоэффективности.

Обсудить перспективы развития умных решений в области энергетики, а также познакомиться с готовыми смарт решениями для энергорынка России можно будет на Smart Energy Summit 2018 в Москве 27-28 марта.

Полный список участников и подробности программы доступны после заполнения этой анкеты.

«Умные сети» Smart Grid — перспективное будущее энергетической отрасли России



Не секрет, что сегодня энергетическая отрасль России для себя наметила довольно перспективные направления развития, которые были продиктованы западным опытом внедрения и развития «умной энергетики» — Smart Grid. Однако, стоит выяснить немаловажный аспект, а именно, ответить на вопрос: пригодна ли Smart Grid концепция для российской энергетики или имеет смысл, определить индивидуальную траекторию развития для отечественной энергетической отрасли?

Обращаясь к сути, нашумевшей в последнее время технологии «умная сеть» SMART GRID, стоит отметить, что данная система активно внедряется в электроэнергетику разных стран. Однако, необходимо изначально определить, что подразумевается под термином SMART GRID?

Не смотря на то, что данное понятие официально введено еще в 2003 году, после публикации статьи в открытых источниках M. T. Burr под названием «Спрос надежности будет управлять инвестициями», до сих пор к единой трактовке научные деятели так и не пришли.

Таким образом, на сегодняшний день, в мировой практике для определения термина «умной сети», как правило, используются ее атрибуты или признаки. Притом, что они имеют разный перечень и формулировку у США, России и Европы. Ниже мы привели сравнительную таблицу таких признаков «Умной сети» у каждой из конкурирующих сторон (рис. 1).

Умная сеть — это автоматизированный программный комплекс, который позволяет, на основе информации, полученной от всех объектов системы и промежуточных элементов сетей, правильно распределяет всю имеющуюся энергию между потребителями, обеспечив при этом стабильность энергосети с точки зрения оценки напряжения и частоты. Помимо основной функции, такая умная сеть умеет устанавливать соединения потребителей с новыми источниками, в числе которых могут быть генерирующие источники с нулевым или пониженным выбросом углекислого газа. Защищенность всей системы достигается за счет уменьшения зависимости от централизованных электростанций, способности сетей и оборудования к самодиагностике и самовосстановлению.

Рис. 1. Основные положения концепции умной энергосистемы с активно-адаптивной сетью

Таким образом, основываясь на табличной информации можно сделать вывод о том, что применяя современные ИКТ, все оборудование умных сетей может активно взаимодействовать друг с другом, образуя интеллектуальный комплекс энергоснабжения. Собранная с оборудования информация анализируется, а результаты анализа помогают:

 оптимизировать процесс использования энергетический ресурсов;

 снизить затраты;

 увеличить надежность функционирования объектов системы;

 увеличить общую эффективность энергосистем.

Рис. 2. Схема иллюстрирующая систему взаимодействия в рамках проекта «Умные сети»

Реализация активно-адаптивной теории функционирования энергетической комплексной системы будет подразумевать развитие на территории России и в частности в области энергетики инновационных технологий, значительное расширение границ действительности для разработки и выпуска высокоинтеллектуальной продукции. Как следствие, высокий показатель энергетической востребованности в транспортной области, развитие и укрепление рыночных отношений с привлечением потенциальными потребителями, в качестве активных игроков рынка.

Благодаря реализации концепции Smart Grid российская энергетика вступит в новую фазу существования, которая будет характеризоваться гармоничным взаимодействием с окружающей средой, улучшением качества жизни и общим экономическим подъемом. И едва ли это противоречит отечественным взглядам на развитие энергетики и страны в целом.

Если исходить из действующих на территории России концептуальных документов, то можно с большой вероятностью спрогнозировать достаточно интенсивное развитие российской умной энергетики.

Так, например, в соответствии с основными положениями «Энергетической стратегии России на период до 2030 года», в качестве приоритетных направлений НТП в области энергетической отрасли страны первоочередными считаются следующие задачи:

 разработка и практическая реализация умных энергосетей нового поколения с высокими показателями интеграции в уже действующие системы энергетики, позволяющих организовывать системные и четко распределенные сети в Единой энергетической системе России;

 применение в работе по реализации пилотных проектов низкотемпературных индукционных накопителей и обеспечение проекта стабильным снабжением электроэнергией от официально назначенных объектов — потребителей;

 динамическое развитие по нескольким направлениям силовой электроники и сетевых управляемых устройств, с сопроводительным применением гибких систем передачи переменного тока — FACTS;

 разработка высокотехнологичных и перспективных проектов надежных магистральных каналов связи, которые будут функционировать между разными ступенями диспетчерского управления и цифровых каналов, осуществляющие обмен точной и своевременной информацией между объектами и центрами управления;

 создание и широкое внедрение централизованных систем противоаварийного управления, охватывающих все уровни Единой энергетической системы России;

 создание автоматизированных информационно-аналитических систем, нацеленных на эффективное управления энергоспросом;

 создание водородных систем аккумулирования энергии и покрытия неравномерностей графика нагрузки.

Существуют препятствия для реализации умной энергетики в нашей стране, в первую очередь это сложность самой системы. Необходим тонкий подход к требованиям и нуждам потребителя, который принуждает учесть индивидуальные особенности всех элементов сети. При этом внедрение осложняет отсутствие единых стандартов и нормативов, которые еще не сложились. Не облегчает процесс и большое количество регуляторов и процедур, обязательных для получения сертификатов и разрешений. Другая группа препятствий носит чисто технический характер. Пока ещё остаются нерешенными такие чисто технические проблемы, как отсутствие доступных надежных и эффективных накопителей энергии или безопасность и защита частной информации передаваемой внутри сети. По мере повышения автоматизации энергосети и внедрения новых коммуникационных технологий растёт и вероятность кибератак на сеть. Отталкиваясь от опыта в других областях, производители компонентов Smart Grid пока наращивают инвестиции в новые технологии, способные отражать кибератаки на энергосети.

Далее мы рассмотрим несколько примеров таких пилотных проектов, которые уже были запущены и находятся в процессе апробации на практике.

Проекты ОАО «ФСК ЕЭС»

На данный момент разрабатываются довольно перспективные проекты умных сетей, а также готовятся к практической реализации идеи по внедрению отдельных элементов умных сетей на объектах ОАО «ФСК ЕЭС». Данные идеи планируется реализовать следующим образом:

  1. Планируется установка СТАТКОМа, а именно статического преобразователя, так называемой, реактивной мощности на базе преобразователя напряжения. Объектом для экспериментальных работ выбрана ПС 400 кВ «Выборгская».
  2. Также будет реализована установка управляемых шунтирующих реакторов, на таких объектах российской энергетики, как ПС 50 кВ «Таврическая», «Барабинская», «Иртыш».
  3. В плане экспериментального проекта установка на ПС 500 кВ «Ново-Анжерская» статического тиристорного компенсатора и конденсаторных установок.

Зарубежный проект «FENIX»

Данный проект построения гибкой электрической сети стал связующим звеном для энерголидеров Европы. Основополагающими его задачами были:

 отработка механизмов функционирования общеевропейской энергосистемы;

 отработка алгоритмов включения в общую систему распределенных источников генерации (DER) и возобновляемых источников энергоресурсов (RES);

 разработка новых программно-аппаратных платформ для реализации концепции VPP;

 технические расчеты и финансово-экономическое обоснование рентабельности использования технологии VPP;

 демонстрация разработок на полигонах в странах Европы.

Итак, в практическом плане в России и за рубежом ведутся активные работы по созданию концепций и апробации технологий умных сетей; перспективы их развития в России можно сформулировать следующим образом:

 Обеспечение бесперебойной работы энергосистемы страны в условиях постоянной энергетической востребованности, а также использования спорадической нагрузки.

 Сокращение энергетических потерь с помощью построения систем умного учета с возможностью учета качества вырабатываемой энергии и ограничения нагрузки.

 Развитие коммуникационной среды, способной надежно и качественно поддерживать двунаправленный информационный обмен между поставщиками и потребителями энергоресурсов. Одним из способов решения данной задачи является применение беспроводных умных коммуникационных устройств.

 Повышение энергетического качества за счет компенсации реактивной мощности, с помощью специальных устройств.

 Применение умного оборудования и программных комплексов для управления топологией сети с целью обеспечения надежности функционирования.

 Развитие рыночных отношений в энергобизнесе с привлечением энергопотребителей как возможных поставщиков необходимых ресурсов в требуемое время в нужные участки сети.

Еще одним значимым результатом внедрения умных технологий энергетики будет общее снижение топливных затрат электростанций. В качестве наглядного примера можно привести модель внедрения умных сетей на территории ЕЭС России.

Для предварительной оценки возможных системных эффектов в ЕЭС России при создании умной электроэнергетики были использованы данные по результатам пилотных проектов, которые были апробированы в различных странах. Но стоит заметить, что все еще сохраняется некая неопределенность того, каких результатов все же стоит ожидать от внедрения составных элементов умной системы. Ниже на рис.3. приведены примерные результаты, которые очень наглядно комментируют дальнейшее развитие и перспективы в области российской энергетической отрасли.

Рис. 3. Графическая интерпретация результатов внедрения «Умных сетей» в российскую энергетику

Как видно по приведенным выше графикам, переход к инновационному варианту развития будет сопровождаться значительным снижением числа вводимых в эксплуатацию электростанций, а также зависимых от них сетевых объектов для выдачи мощности. Таким образом, мы получаем на выходе снижение капиталовложений, что является значимым системным экономическим эффектом. То есть все-таки на выходе от применения подобных инновационных подходов к уже устоявшимся процессам, российская энергетическая отрасль получает огромные и долговременные перспективы.

Таким образом, подводя итог проанализированным и внедренным в российскую реальность энергетики пилотным проектам «умных сетей», можно отметить следующие положительные аспекты данной модернизации развития российской энергетики и экономики. Применение европейского и зарубежного опыта по внедрению данных технологий, позволит избежать масштабных ошибок и огрехов на этапе разработки проектов и их внедрения. Реализация данных инновационных технологий и созданных на их базе разработок, должно быть адаптировано под российские условияфункционирования, в этом случае не станет нарушением государственных политических принципов, являясь образцом эффективного применения мирового опыта на практике.

В конечном счёте, внедрение технологии Smart Grid повысит энергоэффективность отрасли. Но потребует от государства стимулирования в части внедрения новых технологий, поощрения энергетической эффективности генерирующих компаний и решения проблемы энергосбережения.

Литература:

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *